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1. Introduction

This document considers how
to secure Autocrypt [https://autocrypt.org]-capable mail apps against active network attackers.
Autocrypt aims to achieve convenient end-to-end encryption of e-mail.
The Level 1 Autocrypt specification offers users opt-in e-mail encryption,
but only considers passive adversaries.
Active network adversaries,
who could, for example,
tamper with the Autocrypt header during e-mail message transport,
are not considered in the Level 1 specification.
Yet,
such active attackers might undermine the security of Autocrypt.
Therefore,
we present and discuss new ways to prevent and detect active
network attacks against Autocrypt [https://autocrypt.org]-capable mail apps.

We aim to help establish a reverse panopticon:
a network adversary should not be able to determine whether peers
discover malfeasant manipulations,
or even whether they exchange information to investigate attacks.
If designed and implemented successfully it means that those
who (can) care for detecting malfeasance also help to secure the
communications of others in the ecosystem.

This document reflects current research of the NEXTLEAP EU project.
The NEXTLEAP project aims to secure Autocrypt beyond Level 1.
To this end, this document proposes new Autocrypt protocols that focus on
securely exchanging and verifying keys.
To design these protocols,
we considered usability, cryptographic and implementation aspects
simultaneously,
because they constrain and complement each other.
Some of the proposed protocols are already implemented;
we link to the repositories in the appropriate places.


1.1. Attack model and terminology

We consider a network adversary that can read, modify, and create
network messages.
Examples of such an adversary are an ISP, an e-mail provider, an AS,
or an eavesdropper on a wireless network.
The goal of the adversary is to i) read the content of messages, ii)
impersonate peers – communication partners, and iii) to learn who communicates
with whom.
To achieve these goals,
an active adversary might try, for example,
to perform a machine-in-the-middle attack on the key exchange protocol
between peers.
We consider this approach effective against mass surveillance of
the encrypted email content while preventing additional meta data leakage.

To enable secure key-exchange and key-verification between peers,
we assume that peers have access to a out-of-band
communication channel that cannot be observed or manipulated by the adversary.
More concretely we expect them to be able
to transfer a small amount of data via a QR-code confidentially.

Targeted attacks on end devices or the out-of-band channels
can break our assumptions
and therefore the security properties of the protocols described.
In particular
the ability to observe QR-codes in the scan process
(for example through CCTV or by getting access to print outs)
will allow impersonation attacks.
Additional measures can
relax the security requirements for the out-of-band channel
to also work under a threat of observation.

Passive attackers such as service providers can still learn who
communicates with whom at what time and the approximate size of the messages.
We recommend using additional meassures such as encrypting the subject
to prevent further data leakage.
This is beyond the scope of this document though.

Because peers learn the content of the messages,
we assume that all peers are honest.
They do not collaborate with the adversary and follow the protocols described in this document.




1.2. Problems of current key-verification techniques

An important aspect of secure end-to-end (e2e) encryption is the verification of
a peer’s key.
In existing e2e-encrypting messengers,
users perform key verification by triggering two fingerprint verification workflows:
each of the two peers shows and reads the other’s key fingerprint
through a trusted channel (often a QR code show+scan).

We observe the following issues with these schemes:


	The schemes require that both peers start the verification workflow to assert
that both of their encryption keys are not manipulated.
Such double work has an impact on usability.


	In the case of a group, every peer needs to verify keys with each group member to
be able to assert that messages are coming from and are encrypted to the true keys of members.
A peer that joins a group of size \(N\)
must perform \(N\) verifications.
Forming a group of size \(N\) therefore requires
\(N(N-1) / 2\) verifications in total.
Thus this approach is impractical even for moderately sized groups.


	The verification of the fingerprint only checks the current keys.
Since protocols do not store any historical information about keys,
the verification can not detect if there was a past temporary
MITM-exchange of keys (say the network adversary
exchanged keys for a few weeks but changed back to the “correct” keys afterwards).


	Users often fail to distinguish Lost/Reinstalled Device events from
Machine-in-the-Middle (MITM) attacks, see for example When Signal hits the Fan [https://eurousec.secuso.org/2016/presentations/WhenSignalHitsFan.pdf].







1.3. Integrating key verification with general workflows

In Securing communications against network adversaries we describe new protocols that aim to resolve these issues,
by integrating key verification into existing messaging use cases:


	the Setup Contact protocol allows a user, say Alice,
to establish a verified contact with another user, say Bob.
At the end of this protocol,
Alice and Bob know each other’s contact information and
have verified each other’s keys.
To do so,
Alice sends bootstrap data using the trusted out-of-band channel to Bob (for
example, by showing QR code).
The bootstrap data
transfers not only the key fingerprint,
but also contact information (e.g., email address).
After receiving the out-of-band bootstrap data, Alice’s and Bob’s clients
communicate via the regular channel to 1) exchange Bob’s key and contact
information and 2) to verify each other’s keys.
Note that this protocol only uses one out-of-band message requiring
involvement of the user. All other messages are transparent.


	the Verified Group protocol enables a user to invite
another user to join a verified group.
The “joining” peer establishes verified contact with the inviter,
and the inviter then announces the joiner as a new member. At the end of this
protocol, the “joining” peer has learned the keys of all members of the group.
This protocol builds on top of the previous protocol.
But, this time, the bootstrap data functions as an invite code to the group.

Any member may invite new members.
By introducing members in this incremental way,
a group of size \(N\) requires only \(N-1\) verifications overall
to ensure that a network adversary can not compromise end-to-end encryption
between group members. If one group member loses her key (e.g. through device loss),
she must re-join the group via invitation of the remaining members of the verified group.



	the History verification protocol
verifies the cryptograhic integrity of past messages and keys.
It can precisely point to messages where
cryptographic key information has been modified by the network.




Moreover, in Securing communications against network adversaries we also discuss a privacy issue
with the Autocrypt Key gossiping mechanism.
The continuous gossipping of keys may enable an observer
to infer who recently communicated with each other.
We present an “onion-key-lookup” protocol which allows peers
to verify keys without other peers learning who is querying a key from whom.
Users may make onion key lookups
to learn and verify key updates from group members:
if a peer notices inconsistent key information for a peer
it can send an onion-key query to resolve the inconsistency.

Onion key lookups also act as cover traffic
which make it harder for the network
to know which user is actually communicating with whom.




1.4. Supplementary key consistency through ClaimChains

We discuss a variant of ClaimChain [https://claimchain.github.io/], a distributed key consistency scheme,
in which all cryptographic checks are performed on the end-point side.
ClaimChains are self-authenticated hash chains whose blocks contain statements
about key material of the ClaimChain owner and the key material of her contacts.
The “head” of the ClaimChain, the latest block,
represents a commitment to the current state,
and the full history of past states.

ClaimChain data structures track all claims about public keys
and enable other peers to automatically verify the integrity of claims.
ClaimChains include cryptographic mechanisms
to ensure the privacy of the claim it stores
and the privacy of the user’s social graph.
Only authorized users can access the key material and
the cross-references being distributed. In other words, neither providers
nor unauthorized users can learn anything about the key material
in the ClaimChain and the social graph of users
by just observing the data structure.

Private claims could be used by malicious users (or a network adversary who
impersonates users) to equivocate, i.e.,
present a different view of they keys they have seen to their peers.
For example,
Alice could try to equivocate by showing different versions of a cross-reference
of Bob’s key to Carol and Donald.
Such equivocations would hinder the ability to
resolve correct public keys.
Therefore, ClaimChain prevents users (or a network adversaries)
from equivocating to other users about their cross-references.

The implementation of ClaimChains considered in this document
relies on a self-authenticating storage which, given a hash,
replies with a matching data block.
We suggest that providers provide a “dumb” block storage
for their e-mail customers,
re-using existing authentication techniques for guarding writes to the block storage.
The head hashes that allow to verify a full chain are distributed
along with Autocrypt Gossip headers.
Given a head, peers can verify that a chain has not been tampered with and
represents the latest belief of another peer.
Peers can use the information in the chain to perform consistency checks.

ClaimChain permits users to check the evolution of others’ keys over time.
If inspection of the Claimchains reveals inconsistencies in the keys of a peer
– for example, because an adversary tampered with the keys –
the AutoCrypt client can advice the user to run the History-verification protocol
with this inconsistent peer. This protocol will then reveal conclusive evidence
of malfeasance.




1.5. Detecting inconsistencies through Gossip and DKIM

The protocols for key verification and key inconsistency
aid to detect malfeasance.
However, even if they were not added,
mail apps can use existing Autocrypt Level 1 Key Gossip and DKIM signatures
to detect key inconsistencies.

Key inconsistencies or broken signatures found using these methods
can not be interpreted unequivocally as proof of malfeasance.
Yet, mail apps can track such events and provide recommendations to users
about “Who is the most interesting peer to verify keys with?”
so as to detect real attacks.

We note that if the adversary isolates a user
by consistently injecting MITM-keys on her communications,
the adversary can avoid the “inconsistency detection” via Autocrypt’s basic mechanisms.
However, any out-of-band key-history verification of that user will result
in conclusive evidence of malfeasance.







          

      

      

    

  

    
      
          
            
  
2. Securing communications against network adversaries

To withstand network adversaries,
peers must verify each other’s keys
to establish trustable e2e-encrypted communication. In this section we describe
protocols to securely setup a contact, to securely add a user to a group, and
to verify key history.

Establishing a trustable e2e-encrypted communication channel is
particularly difficult
in group communications
where more than two peers communicate with each other.
Existing messaging systems usually require peers to verify keys with every other
peer to assert that they have a trustable e2e-encrypted channel.
This is highly unpractical.
First,
the number of verifications that a single peer must perform becomes
too costly even for small groups.
Second, a device loss will invalidate all prior verifications of a user.
Rejoining the group with a new device (and a new key)
requires redoing all the verification,
a tedious and costly task.
Finally,
because key verification is not automatic –
it requires users’ involvement –
in practice very few users consistently perform key verification.

Key consistency schemes do not remove the need
of key verification.
It is possible
to have a group of peers
which each see consistent email-addr/key bindings from each other,
yet a peer is consistently isolated
by a network adversary performing a machine-in-the-middle attack.
It follows
that each peer needs to verify with at least one other peer
to assure that there is no isolation attack.

A known approach
to reduce the number of neccessary key verifications
is the web of trust.
This approach requires a substantial learning effort for users
to understand the underlying concepts,
and is hardly used outside specialist circles.
Moreover, when using OpenPGP,
the web of trust is usually interacting with OpenPGP key servers.
These servers make the signed keys widely available,
effectively making the social “trust” graph public.
Both key servers and the web of trust have reached very limited adoption.

Autocrypt was designed
to not rely on public key servers,
nor on the web of trust.
It thus provides a good basis
to consider new key verification approaches.
To avoid the difficulties around talking about keys with users,
we suggest new protocols
which perform key verification as part of other workflows,
namely:


	setting up a contact between two individuals who meet physically, and


	setting up a group with people who you meet or have met physically.




These new workflows require administrative messages
to support the authentication and security of the key exchange process.
These administrative messages are sent between devices,
but are not shown to the user as regular messages.
This is a challenge,
because some e-mail apps display all messages
(including machine-generated ones for rejected or non-delivered mails)
without special rendering of the content.
Only some messengers,
such as Delta-chat [https://delta.chat],
already use administrative messages, e.g., for group member management.

The additional advantage of using administrative messages is
that they significantly improve usability by reducing the overall number of actions
to by users.
In the spirit of the strong UX focus of the Autocrypt specification,
however,
we suggest
to only exchange administrative messages with peers
when there there is confidence they will not be displayed “raw” to users,
and at best only send them on explicit request of users.

Note that automated processing of administrative messages
opens up a new attack vector:
malfeasant peers can try to inject adminstrative messages
in order
to impersonate another user or
to learn if a particular user is online.

All protocols that we introduce in this section are decentralized.
They describe
how peers (or their devices) can interact with each other,
without having to rely on services from third parties.
Our verification approach thus fits into the Autocrypt key distribution model
which does not require extra services from third parties either.

Autocrypt Level 1 focusses on passive attacks
such as sniffing the mail content
by a provider.
Active attacks are outside of the scope
and can be carried out automatically
by replacing Autocrypt headers.

Here we aim to increase the costs of active attacks
by introducing a second channel
and using it to verify the Autocrypt headers
transmitted in-band.

We consider targeted active attacks
against these protections feasible.
However they will require coordinated attacks
based for example on infiltrators or real time CCTV footage.

We believe
that the ideas explained here
make automated mass surveillance prohibitively expensive
with a fairly low impact on usability.


2.1. Setup Contact protocol

The goal of the Setup Contact protocol is
to allow two peers to conveniently establish secure contact:
exchange both their e-mail addresses and cryptographic identities in a verified manner.
This protocol is re-used
as a building block
for the history-verification and verified-group protocols.

After running the Setup Contact protocol,
both peers will learn the cryptographic identities (i.e., the keys) of each other
or else both get an error message.
The protocol is safe against active attackers that can modify, create and delete
messages.


[image: _images/secure_channel_foto.jpg]
Setup Contact protocol step 2 with https://delta.chat.



The protocol follows a single simple UI workflow:
A peer “shows” bootstrap data
that is then “read” by the other peer through a second channel.
This means that,
as opposed to current fingerprint verification workflows,
the protocol only runs once instead of twice,
yet results in the two peers having verified keys of each other.

Between mobile phones,
showing and scanning a QR code
constitutes a second channel,
but transferring data via USB, Bluetooth, WLAN channels or phone calls
is possible as well.

Recall that
we assume that
our active attacker cannot observe or modify data transferred
via the second channel.

An attacker who can alter messages
but has no way of reading or manipulating the second channel
can prevent the verification protocol
from completing successfully
by droping or altering messages.

An attacker who can compromise both channels
can inject wrong key material
and convince the peer to verify it.


[image: Sequence diagram of UI and administrative message flow]UI and administrative message flow of contact setup



Here is a conceptual step-by-step example
of the proposed UI and administrative message workflow
for establishing a secure contact between two contacts,
Alice and Bob.


	Alice sends a bootstrap code to Bob via the second channel.


	The bootstrap code consists of:





	Alice’s Openpgp4 public key fingerprint Alice_FP,
which acts as a commitment to the
Alice’s Autocrypt key, which she will send later in the protocol,


	Alice’s e-mail address (both name and routable address),


	A type TYPE=vc-invite of the bootstrap code


	a challenge INVITENUMBER of at least 8 bytes.
This challenge is used by Bob’s device in step 2b
to prove to Alice’s device
that it is the device that the bootstrap code was shared with.
Alice’s device uses this information in step 3
to automatically accept Bob’s contact request.
This is in contrast with most messaging apps
where new contacts typically need to be manually confirmed.


	a second challenge AUTH of at least 8 bytes
which Bob’s device uses in step 4
to authenticate itself against Alice’s device.


	optionally add metadata such as INVITE-TO=groupname




b) Per INVITENUMBER Alices device will keep track of:
- the associated AUTH secret
- the time the contact verification was initiated.
- the metadata provided.



	Bob receives the bootstrap code and


	If Bob’s device already knows a key with the fingerprint Alice_FP
that
belongs to Alice’s e-mail address the protocol continues with 4b)


	otherwise Bob’s device sends
a cleartext “vc-request” message to Alice’s e-mail address,
adding the INVITENUMBER from step 1 to the message.
Bob’s device automatically includes Bob’s AutoCrypt key in the message.






	Alice’s device receives the “vc-request” message.

a) She looks up the bootstrap data for the INVITENUMBER.
If the INVITENUMBER does not match
then Alice terminates the protocol.

b) If she recognizes the INVITENUMBER from step 1
she checks that the invite has not expired.
If the timestamp associated with the INVITENUMBER
is longer ago than a given time
Alice terminates the protocol.


	She then processes Bob’s Autocrypt key.




d) She uses this key
to create an encrypted “vc-auth-required” message
containing her own Autocrypt key, which she sends to Bob.



	Bob receive the “vc-auth-required” message,
decrypts it,
and verifies that Alice’s Autocrypt key matches Alice_FP.


	If verification fails,
Bob gets a screen message
“Error: Could not setup a secure connection to Alice”
and the protocol terminates.


	Otherwise Bob’s device sends back
a ‘vc-request-with-auth’ encrypted message
whose encrypted part contains
Bob’s own key fingerprint Bob_FP
and the second challenge AUTH from step 1.






	Alice decrypts Bob’s ‘vc-request-with-auth’ message

a) and verifies that Bob’s Autocrypt key matches Bob_FP
that the invite has not expired
and that the transferred AUTH matches the one from step 1.

b) If any verification fails,
Alice’s device signals
“Could not establish secure connection to Bob”
and the protocol terminates.



	If the verification succeeds on Alice’s device


	shows “Secure contact with Bob <bob-adr> established”.


	sends Bob a “vc-contact-confirm” message.


	also removes the data associated with INVITENUMBER.






	Bob’s device receives “vc-contact-confirm” and shows
“Secure contact with Alice <alice-adr> established”.




At the end of this protocol,
Alice has learned and validated the contact information and Autocrypt key of Bob,
the person to whom she sent the bootstrap code.
Moreover,
Bob has learned and validated the contact information and Autocrypt key of Alice,
the person who sent the bootstrap code to Bob.


2.1.1. Requirements for the underlying encryption scheme

The Setup Contact protocol requires that
the underlying encryption scheme is non-malleable.
Malleability means the encrypted content can be changed in a deterministic way.
Therefore with a malleable scheme an attacker could impersonate Bob:
They would add a different autocrypt key in Bob’s vc-request message ( step 2.b )
and send the message along without other changes.
In step 4.b they could then modify the encrypted content to include
their own keys fingerprint rather than Bob_FP.

In the case of OpenPGP non-malleability is achieved
with Modification Detection Codes (MDC - see section 5.13 and 5.14 of RFC 4880).
Implementers need to make sure
to verify these
and treat invalid or missing MDCs as an error.
Using an authenticated encryption scheme prevents these issues
and is therefore recommended if possible.




2.1.2. An active attacker cannot break the security of the Setup Contact protocol

Recall that an active attacker can
read, modify, and create messages
that are sent via a regular channel.
The attacker cannot observe or modify the bootstrap code
that Alice sends via the second channel.
We argue that such an attacker cannot
break the security of the Setup Contact protocol,
that is, the attacker cannot
impersonate Alice to Bob, or Bob to Alice.

Assume,
for a worst-case scenario,
that the adversary knows the public Autocrypt keys of Alice and Bob.
At all steps except step 1,
the adversary can drop messages.
Whenever the adversary drops a message,
the protocol fails to complete.
Therefore,
we do not consider dropping of messages further.


	The adversary cannot impersonate Alice to Bob,
that is,
it cannot replace Alice’s key with a key Alice-MITM known to the adversary.
Alice sends her key to Bob in the encrypted “vc-auth-required” message
(step 3).
The attacker can replace this message with a new “vc-auth-required” message,
again encrypted against Bob’s real key,
containing a fake Alice-MITM key.
However, Bob will detect this modification step 4a,
because the fake Alice-MITM key does not match
the fingerprint Alice_FP
that Alice sent to Bob in the bootstrap code.
(Recall that the bootstrap code is transmitted
via the second channel
the adversary cannot modify.)


	The adversary also cannot impersonate Bob to Alice,
that is,
it cannot replace Bob’s key with a key Bob-MITM known to the adversary.
The cleartext “vc-request” message, sent from Bob to Alice in step 2,
contains Bob’s key.
To impersonate Bob,
the adversary must substitute this key with
the fake Bob-MITM key.

In step 3,
Alice cannot distinguish the fake key Bob-MITM inserted by the adversary
from Bob’s real key,
since she has not seen Bob’s key in the past.
Thus, she will follow the protocol
and send the reply “vc-auth-required” encrypted with the key provided by the
adversary.

We saw in the previous part that
if the adversary modifies Alice’s key in the “vc-auth-required” message,
then this is detected by Bob.
Therefore,
it forwards the “vc-auth-required” message unmodified to Bob.

Since Alice_FP matches the key in “vc-auth-required”,
Bob will in step 4b
send the “vc-request-with-auth” message encrypted to Alice’s true key.
This message contains
Bob’s fingerprint Bob_FP and the challenge AUTH.

Since the message is encrypted to Alice’s true key,
the adversary cannot decrypt the message
to read its content.
There are now three possibilities for the attacker:


	The adversary modifies
the “vc-request-with-auth” message
to replace Bob_FP (which it knows) with the fingerprint of the fake
Bob-MITM key.
However,
the encryption scheme is non-malleable,
therefore,
the adversary cannot modify the message, without being detected by Alice.


	The adversary drops Bob’s message and
create a new fake message containing
the finger print of the fake key Bob-MITM and
a guess for the challenge AUTH.
The adversary cannot learn the challenge AUTH:
it cannot observe the bootstrap code
transmitted via the second channel in step 1,
and it cannot decrypt the message “vc-request-with-auth”.
Therefore,
this guess will only be correct with probability \(2^{-64}\).
Thus, with overwhelming probability
Alice will detect the forgery in step 5,
and the protocol terminates without success.


	The adversary forwards Bob’s original message to Alice.
Since this message contains Bob’s key fingerprint Bob_FP,
Alice will detect in step 5
that Bob’s “vc-request” from step 3 had the wrong key (Bob-MITM)
and the protocol terminates with failure.











2.1.3. Replay attacks and conflicts

Alices device records the time a contact verification was initiated.
It also verifies it has not expired and clears the data after
completion.
This prevents replay attacks.
Replay attacks could be used to make Alices device switch back
to an old compromised key of Bob.

Limiting an invite to a single use
reduces the impact of a QR-code
being exposed to an attacker:
If the attacker manages to authenticate faster than Bob
they can impersonate Bob to Alice.
However Bob will see an error message.
If the QR-code could be reused
the attacker could successfully authenticate.
Alice would have two verified contacts
and Bob would not see any difference to a successful
connection attempt.

Furthermore a compromise of Bob’s device
would allow registering other email addresses
as verified contacts with Alice.




2.1.4. Business Cards

QR-codes similar to the ones used for verified contact
could be used to print on business cards.

Since business cards are usually not treated as confidential
they can only serve
to authenticate the issuer of the business card (Alice)
and not the recipient (Bob).

However as discussed on the messaging@moderncrypto mailing list [https://moderncrypto.org/mail-archive/messaging/2018/002544.html]
the verification of a short code at the end of the protocol
can extend it to also protect against leakage of the QR-code.
This may also be desirable
for users who face active surveillance in real life
and therefor cannot assume
that scanning the QR-code is confidential.




2.1.5. Open Questions


	(how) can messengers such as Delta.chat
make “verified” and “opportunistic” contact requests
be indistinguishable from the network layer?


	(how) could other mail apps such as K-9 Mail / OpenKeychain learn
to speak the “setup contact” protocol?









2.2. Verified Group protocol

We introduce a new secure verified group that enables secure
communication among the members of the group.
Verified groups provide these simple to understand properties:


	All messages in a verified group are end-to-end encrypted
and secure against active attackers.
In particular,
neither a passive eavesdropper,
nor an attactive network attacker
(e.g., capable of man-in-the-middle attacks)
can read or modify messages.


	There are never any warnings about changed keys (like in Signal)
that could be clicked away or cause worry.
Rather, if a group member loses her device or her key,
then she also looses the ability
to read from or write
to the verified group.
To regain access,
this user must join the group again
by finding one group member and perform a “secure-join” as described below.





2.2.1. Verifying a contact to prepare joining a group

The goal of the secure-join protocol is
to let Alice make Bob a member (i.e., let Bob join) a verified group
of which Alice is a member.
Alice may have created the group
or become a member prior to the addition of Bob.

In order to add Bob to the group
Alice has to verify him as a contact
if she has not done so yet.
We use this message exchange
to also ask Bob wether he agrees to becoming part of the group.

The protocol re-uses the first five steps of the setup-contact protocol
so that Alice and Bob verify each other’s keys.
To ask for Bob’s explicit consent we
indicate that the messages are part of the verified group protocol,
and include the group’s identifier
in the metadata part of the bootstrap code.

More precisely:


	in step 1 Alice adds the metadata
INVITE=<groupname>.
Where <groupname> is the name of the group GROUP.


	in step 2 Bob manually confirms he wants to join GROUP
before his device sends the vc-request message.
If Bob declines processing aborts.


	in step 5 Alice looks up the metadata
associated with the INVITENUMBER.
If Alice sees the INVITE=<groupname>
but is not part of the group anymore
she aborts the joining process
(without sending another message).




If no failure occurred up to this point,
Alice and Bob have verified each other’s keys,
and Alice knows that Bob wants to join the group GROUP.

The protocol then continues as described in the following section
(steps 6 and 7 of the setup-contact are not used).




2.2.2. Joining a verified group (“secure-join”)

In order to add Bob to a group Alice first needs to make sure
she has a verified key for Bob.
This is the case if Bob already was a verified contact
or Alice performed the steps described in the previous section.

Now she needs to inform the group that Bob should be added.
Bob needs to confirm everything worked:


	Alice broadcasts an encrypted “vg-member-setup” message to all members of
GROUP (including Bob),
gossiping the Autocrypt keys of all members (including Bob).


	Bob receives the encrypted “vg-member-setup” message.
Bob’s device verifies:



	The encryption and Alices signature are intact.


	Alice may invite Bob to a verified group.
That is she is a verified contact of Bob.







If any of the checks fail processing aborts.
Otherwise the device learns
all the keys and e-mail addresses of group members.
Bob’s device sends
a final “vg-member-setup-received” message to Alice’s device.
Bob’s device shows
“You successfully joined the verified group GROUP”.



	Any other group member that receives the encrypted “vg-member-setup” message
will process the gossiped key through autocrypt gossip mechanisms.
In addition they verify:


	The encryption and Alices signature are intact.


	They are themselves a member of GROUP.


	Alice is a member of GROUP.




If any of the checks fail processing aborts.
Otherwise they will add Bob to their list of group members
and mark the gossiped key as verified in the context of this group.



	Alice’s device receives the “vg-member-setup-received” reply from Bob
and shows a screen
“Bob <email-address> securely joined group GROUP”




Bob and Alice may now both invite and add more members
which in turn can add more members.
The described secure-join workflow guarantees
that all members of the group have been verified with at least one member.
The broadcasting of keys further ensures
that all members are fully connected.


[image: _images/join_verified_group.jpg]
Join-Group protocol at step 2 with https://delta.chat.






2.2.3. Strategies for verification reuse

Since we retrieve keys for verified groups from peers
we have to choose wether we want to trust our peers
to verify the keys correctly.

One of the shortcomings of the web of trust
is that it’s mental model is hard to understand
and make practical use of.
We therefore do not ask the user questions
about how much they trust their peers.

Therefore two strategies remain
that have different security implications:


	Restricting verification reuse accross groups
Since we share the content of the group
with all group members
we can also trust them
to verify the keys used for the group.

If they wanted to leak the content they could do so anyway.

However if we want
to reuse keys from one verified group
to form a different one
the peer who originally verified the key
may not be part of the new group.

If the verifier is “malicious”
and colludes with an attacker in a MITM position,
they can inject a MITM key as the verified key.
Reusing the key in the context of another group
would allow MITM attacks on that group.

This can be prevented by restricting
the invitation to verified groups
to verified contacts
and limiting the scope
of keys from member-added messages
to the corresponding group.



	Ignoring infiltrators, focusing on message transport attacks first
One may also choose to not consider advanced attacks
in which an “infiltrator” peer collaborates with an evil provider
to intercept/read messages.

In this case keys can be reused accross verified groups.
Active attacks from an adversary
who can only modify messages in the first channel
are still impossible.

A malicious verified contact may inject MITM keys.
Say Bob when adding Carol as a new member,
sends a prepared MITM key.
We refer to this as a Bob in the middle attack
to illustrate that a peer is involved in the attack.

We note,
that Bob, will have to sign the message
containing the gossip fake keys.
In the following section
we introduce history verification
which will detect such attacks after the fact.
Performing a history verification with Alice
will inform Carol about the MITM key introduced by Bob.
Bob’s signature serves as evidence
that Bob gossiped the wrong key for Alice.

Trusting all peers to verify keys
also allows faster recovery
from device loss.
Say Alice lost her device
and Bob verified the new key.
Once Bob announced the new key in a verified group including Carol
Carol could send the key to further verified groups
that Bob is not part of.








2.2.4. Dealing with key loss and compromise

If a user looses their device
they can setup a new device
and regain access to their inbox.
However they may loose their secret key.

They can generate a new key pair.
Autocrypt will distribute their new public key
in the Autocrypt headers
and opportunistic encryption will switch to it automatically.

Verified groups will remain unreadable
until the user verifies a contact from that group.
Then the contact can update the key used in the group.
This happens by sending a “vg-member-setup” message
to the group.
Since the email address of that user remains the same
the old key will be replaced by the new one.

Implementers may decide
wether the recipients of such key updates
propagate them to other groups
they share with the user in question.
If they do this will speed up the recovery from device loss.
However it also allows Bob-in-the-middle attacks
that replace the originally verified keys.
So the decision needs to be based on the threat model of the app
and the strategy picked for verification reuse

If a key is known or suspected to be compromised
more care needs to be taken.
Since network attackers can drop messages
they can also drop the “vg-member-setup” message
that was meant to replace a compromised key.
A compromised key combined with a network attack
breaks the security of both channels.
Recovering from this situation needs careful consideration
and goes beyond the scope of our current work.




2.2.5. Notes on the verified group protocol


	More Asynchronous UI flow:
All steps after 2 (the sending of adminstrative messages)
could happen asynchronously and in the background.
This might be useful because e-mail providers often delay initial messages
(“greylisting”) as mitigation against spam.
The eventual outcomes (“Could not establish verified connection”
or “successful join”) can be delivered in asynchronous notifications
towards Alice and Bob.
These can include a notification
“verified join failed to complete”
if messages do not arrive within a fixed time frame.
In practise this means that secure joins can be concurrent.
A member can show the “Secure Group invite” to a number of people.
Each of these peers scans the message and launches the secure-join.
As ‘vc-request-with-auth’ messages arrive to Alice,
she will send the broadcast message
that introduces every new peer to the rest of the group.
After some time everybody will become a member of the group.


	Leaving attackers in the dark about verified groups.
It might be feasible to design
the step 3 “secure-join-requested” message
from Bob (the joiner) to Alice (the inviter)
to be indistinguishable from other initial “contact request” messages
that Bob sends to Alice to establish contact.
This means
that the provider would,
when trying to substitute an Autocrypt key on a first message between two peers,
run the risk of immediate and conclusive detection of malfeasance.
The introduction of the verified group protocol would thus contribute to
securing the e-mail encryption eco-system,
rather than just securing the group at hand.


	Sending all messages through alternative channels:
instead of being relayed through the provider,
all messages from step 2 onwards could be transferred via Bluetooth or WLAN.
This way,
the full invite/join protocol would be completed
on a different channel.
Besides increasing the security of the joining,
an additional advantage is
that the provider would not gain knowledge about verifications.


	Non-messenger e-mail apps:
instead of groups, traditional e-mail apps could possibly offer
the techniques described here for “secure threads”.







2.2.6. Autocrypt and verified key state

Verified key material
– whether from verified contacts or verified groups –
provides stronger security guarantees
then keys discovered in Autocrypt headers.

At the same time opportunistic usage
of keys from autocrypt headers
provides faster recovery from device loss.

Therefore the address-to-key mappings obtained using the verification protocols
should be stored separately
and in addition to the data
stored for the normal Autocrypt behaviour.

Verified contacts and groups offer
a separate communication channel
from the opportunistic one.

We separated the two concepts
but they can both be presented to the user
as ‘Verified Groups’.
In this case the verified contact is a verified group with two members.

This allows the UI to feature
a verified group
and the ‘normal’ opportunistic encryption
with the same contact.

The verified group prevents key injection through Autocrypt headers.
In the case of device loss
the user can fall back to the non-verified contact
to ensure availability of a communication channel
even before the next verification has taken place.






2.3. History-verification protocol

The two protocols we have described so far
assure the user about the validity of
the keys they verify and of the keys of their peers in groups they join.
If the protocols detect an active attack
(for example because keys are substituted)
they immediately alert the user.
Since users are involved in a verification process,
this is the right time to alert users.
By contrast, today’s verification workflows alert the users when a
previously key has changed.
At that point users typically are not physically next to each other,
and are rarely concerned with the key since they want
to get a different job done, e.g., of sending or reading a message.

However,
our new verification protocols only verify the current keys.
Historical interactions between peers may involve keys that have never been
verified using these new verification protocols.
So how can users determine the integrity of keys of historical messages?
This is where the history-verification protocol comes in.
This protocol,
that again relies on a second channel,
enables two peers
to verify integrity, authenticity and confidentiality
of their shared historic messages.
After completion, users gain assurance
that not only their current communication is safe
but that their past communications have not been compromised.

By verifying all keys in the shared history between peers,
the history-verification protocol can detect
temporary malfeasant substitutions of keys in messages.
Such substitutions are not caught by current key-fingerprint verification
workflows, because they only provide assurance about the current keys.
They can detect substitutions
that happened via gossip, Autocrypt headers
and through verification reuse (Bob in the middle attacks).

In the latter case they also point out and provide evidence
who introduced the MITM key in a given group.
Performing a history verification with that person
will in turn show where they got the key from.
This way the key can be tracked back to who originally created it.

Like in the setup-contact protocol,
we designed our history-verification protocol so that
peers only perform only one “show” and “read” of bootstrap information
(typically transmitted via showing QR codes and scanning them).

The protocol re-uses the first five steps of the setup-contact protocol
so that Alice and Bob verify each other’s keys.
We make one small modifications to indicate that
the messages are part of the history-verification protocol:
In step 1 Alice adds the metadata
VERIFY=history.

If no failure occurred after step 5,
Alice and Bob have again verified each other’s keys.
The protocol then continues as follows
(steps 6 and 7 of the setup-contact are not used):


	Alice and Bob have each others verified Autocrypt key.
They use these keys to
encrypt a message to the other party
which contains a message/keydata list.
For each message that they have exchanged in the past
they add the following information:


	The message id of that message


	When this message was sent, i.e., the Date field.


	A list of (email-address, key fingerprints) tuples
which they sent or received in that particular message.






	Alice and Bob independently perform
the following history-verification algorithm:


	determine the start-date as the date of the earliest message (by Date)
for which both sides have records.


	verify the key fingerprints for each message since the start-date
for which both sides have records of:
if a key differs for any e-mail address,
we consider this is strong evidence
that there was an active attack.
If such evidence is found,
an error is shown to both Alice and Bob:
“Message at <DATE> from <From> to <recipients> has mangled encryption”.






	Alice and Bob are presented with a summary which lists:


	time frame of verification


	the number of messages successfully verified


	the number of messages with mangled encryption


	the number of dropped messages, i.e. sent by one party,
but not received by the other, or vice versa




If there are no dropped or mangled messages, signal to the user
“history verification successfull”.






2.3.1. Device Loss

A typical scenario for a key change is device loss.
The owner of the lost device loses
access to his private key.
We note that when this happens,
in most cases
the owner also loses access to
his messages (because he can no longer decrypt them)
and his key history.

Thus, if Bob lost his device, it is likely
that Alice will have a much longer history for him then he has himself.
Bob can only compare keys for the timespan after the device loss.
While this verification is certainly less useful,
it would enable Alice and Bob
to detect of attacks in that time after the device lossj.

On the other hand, we can also envision
users storing their history outside of their devices.
The security requirements for such a backup are much lower
than for backing up the private key.
The backup only needs to be tamper proof,
i.e., its integrity must be guaranteed – not its confidentiality.
This is achievable even if the private key is lost.
Users can verify the integrity of this backup even if
they lose their private key.
For example, Bob can cryptographically sign
the key history using his current key.
As long as Bob, and others, have access to Bob’s public key,
he can verify that the backup has not been tampered with.

An alternative is to permit
that Bob recovers his history from the message/keydata list
that he receives from Alice.
Then, he could validate such information
with other people in subsequent verifications.
However, this method is vulnerable to collusion attacks
in which Bob’s keys are replaced in all of his peers,
including Alice.
It may also lead to other error cases
that are much harder to investigate.
We therefore discourage such an approach.




2.3.2. Keeping records of keys in messages

The history verification described above
requires all e-mail apps (MUAs) to record,


	each e-mail address/key-fingerprint tuple it ever saw
in an Autocrypt or an Autocrypt-Gossip header in incoming mails.
This means not just the most recent one(s),
but the full history.


	each emailaddr/key association it ever sent out
in an Autocrypt or an Autocrypt Gossip header.




It needs to associate these data with the corresponding message-id.


2.3.2.1. State tracking suggested implementation

We suggest MUAs could maintain an outgoing and incoming “message-log”
which keeps track of the information in all incoming and outgoing mails,
respectively.
A message with N recipients would cause N entries
in both the sender’s outgoing
and each of the recipient’s incoming message logs.
Both incoming and outgoing message-logs would contain these attributes:


	message-id: The message-id of the e-mail


	date: the parsed Date header as inserted by the sending MUA


	from-addr: the sender’s routable e-mail address part of the From header.


	from-fingerprint: the sender’s key fingerprint of the sent Autocrypt key
(NULL if no Autocrypt header was sent)


	recipient-addr: the routable e-mail address of a recipient


	recipient-fingerprint: the fingerprint of the key we sent or received
in a gossip header (NULL if not Autocrypt-Gossip header was sent)




It is also possible
to serialize the list of recipient addresses and fingerprints into a single value,
which would result in only one entry
in the sender’s outgoing and each recipient’s incoming message log.
This implementation may be more efficient,
but it is also less flexible in terms of how
to share information.






2.3.3. Usability question of “sticky” encryption and key loss

Do we want to prevent
dropping back to not encrypting or encrypting with a different key
if a peer’s autocrypt key state changes?
Key change or drop back to cleartext is opportunistically accepted
by the Autocrypt Level 1 key processing logic
and eases communication in cases of device or key loss.
The “setup-contact” also conveniently allows two peers
who have no address of each other to establish contact.
Ultimately,
it depends on the guarantees a mail app wants to provide
and how it represents cryptographic properties to the user.






2.4. Verifying keys through onion-queries

Up to this point this document has describe methods
to securely add contacts, form groups, and verify history
in an offline scenario where users can establish a second channel
to carry out the verification.
We now discuss how the use of Autocrypt headers can be used
to support continuous key verification in an online setting.

A straightforward approach to ensure view consistency in a group is
to have all members of the group continuously broadcasting their belief
about other group member’s keys.
Unless they are fully isolated by the adversary (see Section for an analysis).
This enables every member
to cross check their beliefs about others and find inconsistencies
that reveal an attack.

However, this is problematic from a privacy perspective.
When Alice publishes her latest belief
about others’ keys she is implicitly revealing
what is the last status she observed
which in turn allows
to infer when was the last time she had contact with them.
If such contact happened outside of the group
this is revealing information
that would not be available had keys not been gossiped.

We now propose an alternative
in which group members do not need to broadcast information
in order to enable key verification.
The solution builds on the observation
that the best person to verify Alice’s key is Alice herself.
Thus,
if Bob wants to verify her key,
it suffices to be able to create a secure channel between Bob and Alice
so that she can confirm his belief on her key.

However,
Bob directly contacting Alice through the group channel
reveals immediately that he is interested on verifying her key
to the group members,
which again raises privacy concerns.
Instead,
we propose that Bob relies on other members
to rely the verifying message to Alice,
similarly to a typical anonymous communication network.

The protocol works as follows:


	Bob chooses \(n\) members of the group as relying parties
to form the channel to Alice.
For simplicity let us take \(n=2\)
and assume these members are Charlie, key \(k_C\),
and David, with key \(k_D\)
(both \(k_C\) and \(k_D\) being the current belief
of Bob regarding Charlie and David’s keys).


	Bob encrypts a message of the form
(Bob_ID, Alice_ID , \(k_A\))
with David and Charlie’s keys in an onion encryption:

\(E_{k_C}\) (David_ID, \(E_{k_D}\) (Alice_ID,(Bob_ID, Alice_ID, \(k_A\) ))),
where \(E_{k_*}\) indicates encrypted with key \(k_*\)

In this message Bob_ID and Alice_ID are the identifiers,
e.g., email addresses, that Alice and Bob use to identify each other.
The message effectively encodes the question
‘Bob asks: Alice, is your key \(k_A\)?’



	Bob sends the message to Charlie,
who decrypts the message to find that it has to be relayed to David.


	David receives Charlie’s message,
decrypts and relays the message to Alice.


	Alice receives the message and replies to Bob
repeating steps 1 to 4 with other random \(n\) members
and inverting the IDs in the message.




From a security perspective,
i.e., in terms of resistance to adversaries,
this process has the same security properties as the broadcasting.
For the adversary to be able to intercept the queries
he must MITM all the keys between Bob and others.

From a privacy perspective it improves over broadcasting
in the sense that not everyone learns each other status of belief.
Also, Charlie knows that Bob is trying a verification,
but not of whom.
However, David gets to learn
that Bob is trying to verify Alice’s key,
thus his particular interest on her.

This problem can be solved in two ways:


	All members of the group check each other continuously so as
to provide plausible deniability regarding real checks.


	Bob protects the message using secret sharing
so that only Alice can see the content once all shares are received.
Instead of sending (Bob_ID, Alice_ID , \(k_A\)) directly,
Bob splits it into \(t\) shares.
Each of this shares is sent to Alice through a distinct channel.
This means that Bob needs toe create \(t\) channels, as in step 1.

When Alice receives the \(t\) shares
she can recover the message and respond to Bob in the same way.
In this version of the protocol,
David (or any of the last hops before Alice) only learns
that someone is verifying Alice,
but not whom, i.e., Bob’s privacy is protected.






2.4.1. Open Questions about onion online verification

An open question is
how to choose contacts to rely onion verification messages.
This choice should not reveal new information about users’ relationships
nor the current groups where they belong.
Thus, the most convenient is
to always choose members of the same group.
Other selection strategies need to be analyzed
with respect to their privacy properties.

The other point to be discussed is bandwidth.
Having everyone publishing their status implies N*(N-1) messages.
The proposed solution employs 2*N*n*t messages.
For small groups the traffic can be higher.
Thus, there is a tradeoff privacy vs. overhead.









          

      

      

    

  

    
      
          
            
  
3. Key consistency with ClaimChains

In this section we show how ClaimChains,
a data structure
that can be used to store users’ key history in a secure and privacy-preserving way,
can be used to support keyhistory verification;
and can also be used to identify
which contacts are best suited to perform in-person key verifications.

We first provide a brief introduction to the ClaimChains structure and its properties.
Then, we describe a concrete usage of ClaimChains in the Autocrypt context.


3.1. High level overview of the ClaimChain design

ClaimChains store claims
that users make about their keys and their view of others’ keys.
The chain is self-authenticating and encrypted.
Cryptographic access control is implemented via capabilities.
In our design, the chains are stored as linked blocks
with a publicly accessible block storage service
in a privacy-preserving way.

Claims come in two forms:
self-claims,
in which a user shares information about her own key material,
and cross-references,
in which a user vouches for the key of a contact.

A user may have one or multiple such ClaimChains,
for example,
associated with multiple devices or multiple pseudonyms.

ClaimChains provide the following properties:


	
	Privacy of the claim it stores,

	only authorized users can access
the key material and cross-references being distributed.







	
	Privacy of the user’s social graph,

	nor providers nor unauthorized users can learn
whose contacts a user has referenced in her ClaimChain.









Additionally ClaimCains are designed to prevent equivocation.
That is,
given Alices ClaimChain,
every other user must have the same view of the cross-references.
In other words,
it cannot be that Carol and Donald observe different versions of Bob’s key.
If such equivocation were possible,
it would hinder the ability to resolve correct public keys.


3.1.1. The ClaimChain Design

ClaimChains represent repositories of claims
that users make about themselves or other users.
To account for user beliefs evolving over time,
ClaimChains are implemented as cryptographic hash chains of blocks.
Each block of a ClaimChain includes all claims
that its owner endorses at the point in time when the block is generated,
and all data needed to authenticate the chain.
In order to optimize space,
it is possible to only put commitments to claims in the block,
and offload the claims themselves onto a separate data structure.

Other than containing claims,
each block in the chain contains enough information
to authenticate past blocks as being part of the chain,
as well as validate future blocks as being valid updates.
Thus,
a user with access to a chain block
that they believe provides correct information
may both audit past states of the chain,
and authenticate the validity of newer blocks.
In particular,
a user with access to the head of the chain can validate the full chain.

We consider that a user stores three types of information in a ClaimChain:


	
	Self-claims.

	Most importantly these include cryptographic encryption keys.
There may also be other claims about the user herself
such as identity information (screen name, real name, email or chat identifiers)
or other cryptographic material needed for particular applications,
like verification keys to support digital signatures.
Claims about user’s own data are initially self-asserted,
and gain credibility by being cross-referenced in chains of other users.







	
	Cross-claims.

	The primary claim about another user is endorsing other user’s ClaimChain
as being authoritative,
i.e.  indicate the belief
that the key material found in the self-claims of those chains is correct.







	
	Cryptographic metadata.

	ClaimChains must contain enough information to authenticate all past states,
as well as future updates of the repository.
For this purpose
they include digital signatures and corresponding signing public keys.









In order to enable efficient operations
without the need for another party
to have full visibility of all claims in the chain,
ClaimChains also have cryptographic links to past states.
Furthermore,
blocks include roots of high-integrity data structures
that enable fast proofs of inclusion of a claim in the ClaimChain.

Any of the claims can be public(readable by anyone), or private.
The readability of private claims on a chain
is enforced using a cryptographic access control mechanism
based on capabilities.
Only users that are provided with a capability
for reading a particular cross-reference in a ClaimChain
can read such claim,
or even learn about its existence.

Other material needed for ensuring privacy and non-equivocation is also included,
as described in detail at https://claimchain.github.io .






3.2. Use and architecture

This section discusses how ClaimChains can be integrated into Autocrypt.
It considers that:


	ClaimChains themselves are retrieved and uploaded
from an online storage
whenever a message is sent or received,


	ClaimChain heads are transferred using email headers.




This version is being implemented at
https://github.com/nextleap-project/muacryptcc .


3.2.1. Inclusion in Messages

When Autocrypt gossip includes keys of other users in an email
claims about these keys are included in the senders chain.
The email will reference the senders chain as follows:

The Autocrypt and gossip headers are the same as usual.
In addition we include a single header
that is used to transmit
the sender head imprint (root hash of our latest CC block)
in the encrypted and signed part of the message:

GossipClaims: <head imprint of my claim chain>





Once a header is available,
the corresponding ClaimChain block(s) can be retrieved
from the block storage service.
After retrieving the chain the recipients can verify
that the other recipients keys are properly included in the chain.

The block also contains pointers to previous blocks
such that the chain can be efficiently traversed.




3.2.2. Mitigating Equivocation in different blocks

The easiest way to circumvent the non-equivocation property
is to send different blocks to two different parties.

We work around this by proving to our peers
that we did not equivocate in any of the blocks.

The person who can best confirm the data in a block
is the owner of the respective key.




3.2.3. Proofs of inclusion

Proofs of inclusion allow
verifying the inclusion of claims in the chain
without retrieving the entire block.

The ClaimChain design suggests
to include proofs of inclusion
for the gossiped keys in the headers.
This way the inclusion in the given block could be verified offline.

However in order to prevent equivocation
all blocks since the last one we know need to be checked.
Therefore we would have to include proofs of inclusion
for all recipients and for all blocks
since they last saw the chain.
This in turn would require tracking the state
each peer last saw of our own chain.

We decided against adding the complexity involved.
Instead we require users to be online
to verify the inclusion of their own keys
in peers chains and the overall consistency
of their peers claims.

This fits nicely with the recommendation guidance workflow
described below.




3.2.4. Constructing New Blocks

The absence of a claim can not be distinguished
from the lack of a capability for that claim.
Therefore, to prove
that a ClaimChain is not equivocating about keys gossiped in the past
they need to include,
in every block,
claims corresponding to those keys,
and grant access to all peers
with whom the key was shared in the past.

When constructing a new block
we start by including all claims about keys present in the last block,
and their corresponding capabilities.

In addition the client will include claims
with the fingerprints of new gossiped keys.
For peers that also use ClaimChain
the client will include a cross-reference,
i.e., the root hash of the latest block
they saw from that peer in the claim.

Then,
if they did not exist already,
the client will grant capabilities
to the recipients for the claims concerning those recipients.
In other words,
it will provide the recipients with enough information
to learn each other keys and ClaimChain heads.

Note that due to the privacy preserving nature of ClaimChain
these keys will not be revealed to anyone else
even if the block data is publically accessible.






3.3. Evaluating ClaimChains to guide verification

Verifying contacts requires meeting in person,
or relying on another trusted channel.
We aim at providing users with means to identify
which contacts are the most relevant to validate
in order to maintain the security of their communication.

The first in-person verification is particularly important.
Getting a good first verified contact prevents full isolation of the user,
since at that point it is not possible anymore
to perform MITM attacks on all of her connections.

Due to the small world phenomenon in social networks
few verifications per user will already lead to a large cluster
of verified contacts in the social graph.
In this scenario any MITM attack will lead to inconsistencies
observed by both the attacked parties and their neighbours.
We quantify the likelihood of an attack in Attack Scenarios.

To detect inconsistencies clients can compare their own ClaimChains with those of peers.
Inconsistencies appear as claims by one peer about another peer’s key material
that differ from ones own observation.

Given inconsistency of a key it is not possible
to identify unequivocally which connection is under attack:


	It may be the connection between other peers
that leads them to see MITM keys for each other,
while the owner is actually observing the actual ones.


	It may be that the owner is seeing MITM keys for one of them,
while the other one is claiming the correct key.




Verifying one of the contacts
for whom an inconsistency has been detected
will allow determining whether that particular connection is under attack.
Therefore we suggest
that the recommendation regarding the verification of contacts
is based on the number of inconsistencies observed.


3.3.1. Split world view attacks

Note, however,
that the fact that peers’ claims are consistent does not imply
that no attack is taking place.
It only means
that to get to this situation an attacker has to split the social graph
into groups with consistent ideas about their peers keys.
This is only possible
if there are no verified connections between the different groups.
It also requires mitm attacks on more connections
possibly involving different providers.
Therefore checking consistency makes the attack both harder and easier to detect.

In the absence of inconsistencies
we would therefore like to guide the user towards verifying contacts
they have no (multi-hop) verified connection to.
But since we want to preserve the privacy
of who verified whom
we cannot detect this property.
The best guidance we can offer is to verify users
who we do not share a verified group with yet.




3.3.2. Inconsistencies between other peoples chains

In addition to checking consistency with the own chain
the clients could also compare claims
across the ClaimChains of other people.
However, inconsistencies between the chains of others
are a lot harder to investigate.
Therefore their use for guiding the user is very limited.
Effectively the knowledge about conflicts
between other peoples chains
is not actionable for the user.
They could verify with one of their peers
- but even that would not lead to conclusive evidence.

In addition our implementation stores claims
about all keys in active use
in its own claimchain.
Therefore if the user communicates with the person in question
at least one of the conflicting keys of peers
will conflict with our own recorded key.
We refrain from asking the user to verify people
they do not communicate with.




3.3.3. Problems noticed


	complex to specify interoperable wire format of ClaimChains
and all of the involved cryptographic algorithms


	Autocrypt-gossip + DKIM already make it hard for providers to equivocate.
CC don’t add that much
(especially in relation to the complexity they introduce)


	lack of underlying implementation for different languages


	Maybe semi-centralized online storage access
(we can postpone storage updates to the time we actually send mail)












          

      

      

    

  

    
      
          
            
  
4. Using Autocrypt key gossip to guide key verification

Autocrypt Level 1 introduces key gossip [https://autocrypt.org/level1.html#key-gossip]
where a sender adds Autocrypt-Gossip headers
to the encrypted part of a multi-recipient message.
This was introduced to ensure users are able to reply encrypted.
Because according to the Autocrypt specification
encrypted message parts are always signed,
recipients may interpret the gossip keys
as a form of third-party verification.

In gossip-attack we look at how MUAs can check key consistency
with respect to particular attacks.  MUAs can flag possible
machine-in-the-middle (mitm) attacks on one of the direct connections
which in turn can be used for helping users
with prioritizing History-verification protocol with those peers.
To mitigate, attackers may intercept
multiple connections to split the recipients into mostly isolated
groups. However, the need to attack multiple connections at once
increases the chance of detecting the attack by even a small
amount of Out-of-Band key verifications.

The approaches described here are applicable to other asymmetric
encryption schemes with multi recipient messages. They are independent of
the key distribution mechanism - wether it is in-band such as in
Autocrypt or based on a keyserver like architecture such as in Signal.


4.1. Attack Scenarios


4.1.1. Attacking group communication on a single connection


[image: Targetted attack on a single connection]Targetted attack on a single connection



The attacker intercepts the initial message from Alice to Bob (1)
and replaces Alices key a with a mitm key a' (2).
When Bob replies (3)
the attacker decrypts the message,
replaces Bobs key b with b',
encrypts the message to a
and passes it on to Alice (4).

Both Bob and Alice also communicate with Claire (5,6,7,8).
Even if the attacker chooses to not attack this communication
the attack on a single connection poses a significant risk
for group communication amongst the three.

Since each group message goes out to everyone in the group
the attacker can read the content of all messages sent by Alice or Bob.
Even worse … it’s a common habit in a number of messaging systems
to include quoted text from previous messages.
So despite only targetting two participants
the attack can provide access to a large part of the groups conversation.

Therefore participants need to worry
about the correctness of the encryption keys they use
but also of those of everyone else in the group.




4.1.2. Detecting mitm through gossip inconsistencies

Some cryptographic systems such as OpenPGP leak the keys used for other
recipients and schemes like Autocrypt even include the keys. This allows
checking them for inconsistencies to improve the confidence in the
confidentiality of group conversation.
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In the scenario outlined above Alice knows about three keys (a,
b', c). Sending a message to both Bob and Clair she signs the
message with her own key and includes the other two as gossip keys
a[b',c]. The message is intercepted (1) and Bob receives one signed
with a' and including the keys b and c (2). Claire receives
the original message (3) and since it was signed with a it cannot be
altered. C’s client can now detect that A is using a different key for B
(4). This may have been caused by a key update due to device loss.
However if B responds to the message (5,6,7) , C learns that B also uses
a different key for A (8). At this point C’s client can suggest to
verify fingerprints with either A or B. In addition a reply by C (9, 10)
will provide A and B with keys of each other through an independent
signed and encrypted channel. Therefore checking gossip keys poses a
significant risk for detection for the attacker.




4.1.3. Attacks with split world views

In order to prevent detection through inconsistencies an attacker may
choose to try and attack in a way that leads to consistent world views
for everyone involved. If the attacker in the example above also
attacked the key exchange between A and C and replaced the gossip keys
accordingly here’s what everyone would see:

A: a , b', c'
B: a', b , c
C: a', b , c





Only B and C have been able to establish a secure communication channel.
But from their point of view the key for A is a’ consistently. Therefore
there is no reason for them to be suspicious.

Note however that the provider had to attack two key exchanges. This
increases the risk of being detected through OOB-verification.






4.2. Probability of detecting an attack through out of band verification

Attacks on key exchange to carry out mitm attacks that replace everyones
keys would be detected by the first out-of-band verification and the
detection could easily be reproduced by others.

However if the attack was carried out on only a small part of all
connections the likelyhood of detection would be far lower and error
messages could easily be attributed to software errors or other quirks.
So even an attacker with little knowledge about the population they are
attacking can learn a significant part of the group communication
without risking detection.

In this section we will discuss the likelyhood of detecting mitm attacks
on randomly selected members of a group. This probabilistic discussion
assumes the likelyhood of a member being attacked as uniform and
independent of the likelyhood of out-of-band verification. It therefore
serves as a model of randomly spread broad scale attacks rather than
targetted attacks.


4.2.1. Calculating the likelyhood of detection

A group with n members has \(c = n \times \frac{n-1}{2}\)
connections.

Let’s consider an attack on \(a\) connections. This leaves
\(g = c-a\) good connections. The probability of the attack not
being detected with 1 key verification therefore is \(\frac{g}{c}\).

If the attack remains undetected c-1 unverified connections amongst
which (g-1) are good remain. So the probability of the attack going
unnoticed in v verification attempts is:

\(\frac{g}{c} \times \frac{g-1}{c-1} ... \times \frac{g-(v-1)}{c-(v-1)}\)
\(= \frac{g (g-1) ... (g-(v-1))}{c (c-1) ... (c-(v-1))}\)
\(= \frac{ \frac{g!}{(g-v)!} }{ \frac{c!}{(c-v)!} }\)
\(= \frac{ g! (c-v)! }{ c! (g-v)! }\)




4.2.2. Single Attack

As said above without checking gossip an attacker can access a relevant
part of the group conversation and all direct messages between two
people by attacking their connection and nothing else.

In order to detect the attack
key verification needs to be performed on the right connection.
In a group of 3 users there are 3 direct connections.
Therefor the chance of a single key verificatoin for detecting
the attack is \(\frac{1}{3}\).
In a group of 10 the chances are even slimmer: frac{1}{45} approx 2%




4.2.3. Isolation attack

Isolating a user in a group of n people requires (n-1) interceptions.
This is the smallest attack possible that still provides consistent
world views for all group members. Even a single verification will
detect an isolation attack with a probability > 20% in groups smaller
than 10 people and > 10% in groups smaller than 20 people.

Isolation attacks can be detected in all cases if every participant
performs at least 1 OOB-verification.




4.2.4. Isolating pairs

If each participant OOB-verifies at least one other key
isolation attacks can be ruled out. The next least invasive attack would
be trying to isolate pairs from the rest of the group. However this
requires more interceptions and even 1 verification on average per user
leads to a chance > 88% for detecting an attack on a random pair of
users.




4.2.5. Targeted isolation

The probabilities listed in the table assume that the attacker has no
information about the likelyhood of out of band verification between the
users. If a group is known to require a single key verification per
person and two members of the group are socially or geographically
isolated chances are they will verify each others fingerprints and are
less likely to verify fingerprints with anyone else. Including such
information can significantly reduce the risk for an attacker.









          

      

      

    

  

    
      
          
            
  
5. Using DKIM signature checks to guide key verification

With DomainKeys Identified Mail (DKIM) [https://dkimorg],
a mail transfer agent (MTA) signals to other MTAs that a particular message passed through one of its machines. In particular, a MTA signs outoing mail from their
users with a public key that is stored with DNS, the internet domain
name system. The MTA adds a DKIM-Signature header which is then verified
by the next MTA which in turns may add an Authentication-Results header [https://en.wikipedia.org/wiki/Email_authentication#Authentication-Results].
After one or more MTAs have seen and potentially DKIM-signed
the message, it finally arrives at Mail User Agents (MUAs). MUAs then
can not reliably verify all DKIM-signatures because the intermediate
MTAs may have mangled the original message, a common practise with
mailing lists and virus-checker software.

In DKIM Signatures on Autocrypt Headers and following we discuss how DKIM-signatures can help
protect the Autocrypt key material from tampering between the senders MTA and the
recipients MUA.


5.1. DKIM Signatures on Autocrypt Headers
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Alice sends a mail to Bob including an Autocrypt header with her key(a).
First, Alice’s Provider authenticates Alice, and upon receiving her message (1), it adds a DKIM signature header and then passes it on to Bobs provider (2). When Bob’s provider receives the message it retrieves the public DKIM key from Alice’s provider (3,4) and verifies Alice’s provider DKIM signature (5).

This is the default DKIM procedure and serves primarily to detect and prevent spam email. If the DKIM signature matches (and other spam tests pass) Bob’s provider relays the message to Bob (6).

In the current established practice Bob’s MUA will simply present the
message to Bob without any further verification. This means that Bob’s provider is in a position to modify the message before it is presented to Alice. This can be avoided if Bob’s MUA also retrieves the DKIM key (7,8) and verifies the signature (9, making sure that the headers and content have not been altered after leaving the Alice’s provider. In other words, a valid DKIM signature on the mail headers, including the Autocrypt header, indicates that the recipient’s provider has not altered the key included in the header.

It must be noted that since some providers do not use DKIM signatures at
all, a missing signature by itself does not indicate a MITM attack.
Also, some providers alter incoming mails to attach mail headers or add
footers to the message body. Therefore even a broken signature can have
a number of causes.

The DKIM header includes a field bh with the hash of the email body
that was used to calculate the full signature. If the DKIM signature is
broken it may still be possible to verify the Autocrypt header based
on the body hash and the signed headers.




5.2. Device loss and MITM attacks

Autocrypt specifies to happily accept new keys send in Autocrypt headers
even if a different key was received before. This is meant to prevent
unreadable mail, but also offers a larger attack surface for MITM
attacks.

The Autocrypt spec explicitely states that it does not provide
protection against active attacks. However combined with DKIM signatures
at least a basic level of protection can be achieved:

A new key distributed in a mail header with a valid DKIM signature
signals that the key was not altered after the mail left the sender’s
provider. Yet, the following threats remain:


	the sender’s device was compromised


	the sender’s email account was compromised


	the transport layer encryption between the sender and their provider
was broken


	the sender’s provider is malicious


	the sender’s provider was compromised




This attack vector is shared by any other key distribution scheme that rely on the provider to certify or distribute the user’s keys.


5.2.1. One malicious provider out of two

In order to carry out a successful transparent MITM attack on a
conversation the attacker needs to replace both parties keys and
intercept all mails. While it’s easy for either one of the providers to
intercept all emails replacing the keys in the headers and the
signatures in the body will lead to broken DKIM signatures in one
direction.




5.2.2. Same provider or two malicious providers

If both providers cooperate on the attack or both users use the same
provider it’s easy for the attacker to replace the keys and pgp
signatures on the mails before DKIM signing them.  However, with
their DKIM-signatures they would have signed Autocrypt headers
that were never sent by the users’s MUAs.




5.2.3. Key updates in suspicious mails

If a MUA has seen an Autocrypt header with a valid DKIM
signature from the sender before and receives a new key in a mail
without a signature or with a broken signature that may indicate a MITM
attack.






5.3. Open Questions


5.3.1. Reliability of DKIM signatures

Key update notifications suffer from a high number of false positives.
Most of the time the key holder just lost their device and reset the
key. How likely is it that for a given sender and recipient DKIM
signatures that used to be valid when receiving the emails stop being
valid? How likely is this to occure with the introduction of a new
key? Intuitively both events occuring at the same time seems highly
unlikely. However an attacker could also first start breaking DKIM
signatures and insert a new key after some mails. In order to estimate
the usefulness of this approach more experiences with MUA side
validation of DKIM signatures would be helpful.




5.3.2. Provider support

In December 2017 the provider posteo.de announced that they will DKIM
sign Autocrypt headers of outgoing mail.

What can providers do?


	DKIM-sign Autocrypt headers in outgoing mails


	preserve DKIM signed headers in incoming mails


	add an Authentication-Results header which indicates
success in DKIM validation.




Maybe they can indicate both these properties in a way that can be
checked by the recipients MUA?
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